

# **Protein Folding Services Section Home**

# **History**

The study of protein folding began with Anfinsen's "thermodynamic hypothesis" in the 1960s, proposing that the native structure of a protein is determined solely by its amino acid sequence. The "protein folding problem" emerged when it became apparent that predicting a protein s three-dimensional structure was challenging.

#### Christian B. Anfinsen

Awarded the Nobel Prize for work on protein folding.

#### Jane Richardson

Introduced the concept of protein motifs and ribbon diagrams.

### **Nuclear Magnetic Resonance (NMR)**

Providing insights into protein structures in solution.

### **Computational Approaches**

Simulating folding pathways and energies.

# **Industrial Applications**

1.

#### **Disease Mechanisms**

Unveiling misfolding-related disorders like Alzheimer s and Parkinson s. 3.

### **Biotechnology**

Engineering proteins for industrial and medical purposes. 5

## **Protein-Based Therapeutics**

Producing recombinant proteins for medical treatments.

7.

### **Agrochemicals**

Developing pesticides targeting insect proteins.

#### **Bioinformatics**

Predicting protein structures for functional insights. 11.

### **Vaccine Development**

Investigating protein structures for vaccine antigens.

### **Food Industry**

Enhancing food texture and flavor with modified proteins. 15.

#### **Biosensors**

Using protein folding changes for sensing applications. 17.

#### **Protein Evolution**

Studying protein folding changes during evolution. 19.

### **Cellular Regulation**

Exploring how proteins fold in response to cellular signals.

# Deep Learning and AI

Predicting protein structures with greater accuracy.

Protein Folding Services Section Home

\_

# **Intrinsically Disordered Proteins**

Studying proteins that lack a fixed structure.

-

# **Unfolded Protein Response**

Investigating cellular responses to misfolding.

-