Loading Video...
NTHRYS
Arrow

Kinetic Modeling ODE, SDE & Parameter Estimation Training | Dynamic Models & Calibration

NTHRYS >> Services >> Academic Services >> Training Programs >> Bioinformatics Training >> Systems Biology, Network Modeling & Pathway Dynamics >> Kinetic Modeling ODE, SDE & Parameter Estimation Training | Dynamic Models & Calibration

Kinetic Modeling ODE, SDE & Parameter Estimation — Hands-on

Learn how to formulate, simulate and calibrate kinetic models of biological systems using ordinary and stochastic differential equations. This module covers model setup, numerical solvers, parameter estimation, identifiability and uncertainty analysis with a focus on biologically interpretable, decision ready dynamic models.

Kinetic Modeling ODE, SDE & Parameter Estimation
Help Desk · WhatsApp
Session 1
Fee: Rs 8800
ODE Based Kinetic Modeling Fundamentals
  • Differential equations for biochemical reactions
  • mass action kinetics Michaelis Menten style rates Hill functions and cooperativity
  • Formulating ODE models from pathway diagrams
  • state variables and parameters inputs and outputs conservation relationships
  • Numerical integration and solver basics
  • time stepping and stiffness common ODE solvers overview basic stability intuition
Session 2
Fee: Rs 11800
Stochastic Models, Noise and SDE Basics
  • Sources of noise in biological systems
  • intrinsic vs extrinsic noise small copy number effects stochastic switching intuition
  • Stochastic simulation and SDE overview
  • Gillespie style ideas SDE formulation basics Euler Maruyama concept
  • When to use deterministic vs stochastic models
  • scale and copy number questions being answered computational tradeoffs
Session 3
Fee: Rs 14800
Parameter Estimation & Identifiability
  • Data for calibration and cost functions
  • time course and dose response data least squares and likelihood views data scaling and weighting
  • Optimization strategies for parameter fitting
  • gradient based and gradient free local vs global search practical tips for convergence
  • Identifiability, sensitivity and uncertainty basics
  • structural vs practical identifiability local sensitivity ideas confidence intervals overview
Session 4
Fee: Rs 18800
Mini Capstone: Build & Calibrate a Kinetic Model
  • Select a small signaling or gene regulation motif and write equations
  • Theory plus guided practical
  • Fit parameters to synthetic or provided data and assess fit quality
  • optimization workflow diagnostic plots basic sensitivity and uncertainty checks
  • Deliverables: model code, plots and brief report
  • Python or R notebook time course and fit plots PDF or HTML summary


PDF