Loading Video...
NTHRYS
Arrow

Microbiome Statistics: Compositional Data & Bias Correction Training | CLR/ILR, DEICODE, ANCOM-BC/ALDEx2, ComBat/RUV

NTHRYS >> Services >> Academic Services >> Training Programs >> Bioinformatics Training >> Microbiome, Metagenomics & Environmental Bioinformatics >> Microbiome Statistics: Compositional Data & Bias Correction Training | CLR/ILR, DEICODE, ANCOM-BC/ALDEx2, ComBat/RUV

Microbiome Statistics: Compositional Data & Bias Correction — Hands-on

Build statistically rigorous, bias-aware microbiome analyses from the ground up. This module focuses on compositional data principles (Aitchison geometry) , correct normalizations and transformations, robust differential abundance, and thorough handling of batch effects, zeros, confounders, and technical bias. You will implement analyses in R/Python/QIIME 2 and deliver a reproducible mini-report with checklists and interpretation notes.

Microbiome Statistics: Compositional Data & Bias Correction
Help Desk · WhatsApp
Session 1
Fee: Rs 8800
Compositional Foundations & Transforms
  • Aitchison geometry & pitfalls of rarefaction/TSS-only views
  • closure & subcompositional coherence library-size confounding feature prevalence filtering
  • Transforms & balances
  • CLR/ALR/ILR SBP/phylogenetic ILR (PhILR) balance trees & interpretation
  • Zeros & limits of detection
  • multiplicative/Bayesian replacement pseudo-count strategies sensitivity analyses
Session 2
Fee: Rs 11800
Distances, Ordinations & Hypothesis Tests
  • Distance choices & ordination
  • Aitchison (Euclidean on CLR) robust PCA (DEICODE/RPCA) UniFrac vs composition-aware
  • Group comparisons & covariates
  • PERMANOVA/permdisp caveats AN (C) OVA on balances effect sizes & CIs
  • Power/size for compositional analyses
  • simulation & Dirichlet-multinomial sparsity & prevalence impacts multiple testing control
Session 3
Fee: Rs 14800
Differential Abundance & Confounding
  • DA methods (strengths & caveats)
  • ANCOM-BC / ALDEx2 corncob / Songbird (QLR) W-statistics & rankings
  • Covariates & mixed models on balances
  • MaAsLin2 with CLR/ILR random effects (subject/time) stratified/blocked analyses
  • Sensitivity & robustness checks
  • zero-handling variants rare taxa vs aggregates simulation-based validation
Session 4
Fee: Rs 18800
Batch/Bias Correction & Reproducible Reporting
  • Batch & unwanted variation
  • ComBat/ComBat-Seq; RUV-III-NB removeBatchEffect (limma) percentile normalization
  • Technical bias awareness
  • PCR/primer & lysis biases spike-ins & mock communities contamination checks
  • Reporting, checklists & exports
  • Quarto notebooks & model cards tables/figures + env files assumptions & limitations


PDF