Loading Video...
NTHRYS
Arrow

Parameter Estimation, Optimization & Bayesian Calibration Training | Frequentist & Bayesian Workflows

NTHRYS >> Services >> Academic Services >> Training Programs >> Bioinformatics Training >> Systems Biology, Network Modeling & Pathway Simulation >> Parameter Estimation, Optimization & Bayesian Calibration Training | Frequentist & Bayesian Workflows

Parameter Estimation, Optimization & Bayesian Calibration — Hands-on

Learn how to turn mechanistic and constraint-based models into quantitatively calibrated decision tools. This module covers cost functions and likelihoods, local and global optimization, Bayesian calibration with MCMC, and uncertainty-aware prediction. You will work with ODE/SDE models, signaling and metabolic networks, and implement end-to-end estimation workflows using Python (SciPy/lmfit/PyMC) , R (FME/bbmle) , COPASI, and Stan, with publication-ready figures and reports.

Parameter Estimation, Optimization & Bayesian Calibration
Help Desk · WhatsApp
Session 1
Fee: Rs 8800
Fundamentals & Cost Functions
  • Framing parameter estimation problems
  • ODE/SDE models constraint-based models (overview) observables & experimental design
  • Error models, cost & likelihood
  • least squares / weighted least squares Gaussian likelihoods log-likelihood & information criteria (AIC/BIC)
  • Toolchain & basic fitting
  • Python: SciPy optimize, lmfit R: FME, bbmle COPASI fits
Session 2
Fee: Rs 11800
Optimization Strategies & Workflows
  • Local optimization methods
  • gradient-based (BFGS, Levenberg–Marquardt) Nelder–Mead & trust-region multi-start strategies
  • Global & hybrid optimization
  • genetic algorithms / DE particle swarm / simulated annealing global + local refinement workflows
  • Identifiability & practical issues
  • structural vs practical identifiability (overview) parameter bounds & scaling overfitting & regularization
Session 3
Fee: Rs 14800
Bayesian Calibration & MCMC
  • Priors, posteriors & Bayes workflow
  • prior elicitation posterior interpretation credible intervals vs confidence intervals
  • MCMC algorithms & diagnostics
  • Metropolis–Hastings / Gibbs HMC / NUTS (Stan, PyMC overview) convergence checks (R-hat, ESS, trace plots)
  • Toolchain for Bayesian calibration
  • Stan / CmdStanR / CmdStanPy PyMC / emcee COPASI parameter estimation (Bayesian mode overview)
Session 4
Fee: Rs 18800
Mini Capstone: Calibrated Model with Uncertainty
  • End-to-end case study: from time-course data to calibrated model
  • Theory + Practical
  • Uncertainty, prediction & scenarios
  • posterior predictive checks prediction intervals & bands scenario simulations with parameter samples
  • Deliverables
  • PDF/HTML calibration report Python/R notebook + model files environment.yml/requirements.txt


PDF