Loading Video...
NTHRYS
Arrow

Sensitivity Analysis & Uncertainty Quantification (UQ) Training | Local/Global SA & UQ Workflows

NTHRYS >> Services >> Academic Services >> Training Programs >> Bioinformatics Training >> Systems Biology, Network Modeling & Pathway Simulation >> Sensitivity Analysis & Uncertainty Quantification (UQ) Training | Local/Global SA & UQ Workflows

Sensitivity Analysis & Uncertainty Quantification (UQ) — Hands-on

Develop a solid, practice-oriented understanding of sensitivity analysis and uncertainty quantification (UQ) for systems biology models. Starting from local sensitivities and one-at-a-time (OAT) analyses, you will move to global variance-based methods (Morris, Sobol) and full uncertainty propagation with Monte Carlo and Latin hypercube sampling. The focus is on building robust, reproducible pipelines in Python/R and COPASI for ODE, logical and metabolic models, and communicating results via clear plots and reports.

Sensitivity Analysis & Uncertainty Quantification (UQ)
Help Desk · WhatsApp
Session 1
Fee: Rs 8800
Concepts & Local Sensitivity Analysis
  • Why sensitivity & UQ for systems models?
  • model credibility & robustness parameters vs outputs risk & decision support
  • Local/derivative-based sensitivity
  • finite differences normalized sensitivity coefficients one-at-a-time (OAT) analysis
  • Toolchain & simple workflows
  • Python: NumPy/SciPy, SALib (intro) R: FME, sensitivity package COPASI local sensitivities
Session 2
Fee: Rs 11800
Global Sensitivity: Morris, Sobol & Variance-Based SA
  • Sampling strategies for global SA
  • parameter ranges & distributions Monte Carlo sampling Latin hypercube sampling (LHS)
  • Morris & Sobol methods
  • Morris screening (μ*, σ) Sobol first-order & total indices variance decomposition & interpretation
  • Implementation & visualization
  • Python SALib R: sensitivity, lhs tornado plots & sensitivity bars
Session 3
Fee: Rs 14800
Uncertainty Quantification & Propagation
  • Sources & types of uncertainty
  • parameter vs structural uncertainty measurement noise scenario & model-form uncertainty (overview)
  • UQ workflows & propagation
  • Monte Carlo propagation LHS-based UQ prediction bands & credible intervals
  • Tools & reporting
  • Python (SALib, SciPy, NumPy) R (FME, sensitivity) COPASI UQ (overview)
Session 4
Fee: Rs 18800
Mini Capstone: SA & UQ for a Systems Model
  • End-to-end case study: apply SA & UQ to a chosen model (ODE/logic/metabolic)
  • Theory + Practical
  • Interpretation & decision support
  • key drivers & influential parameters robust vs fragile outputs communicating risk & uncertainty
  • Deliverables
  • PDF/HTML SA & UQ report Python/R notebook + scripts environment.yml/requirements.txt


PDF