

Ngs Summer Training

NTHRYS provides Ngs Summer Training for interested candidates at its Hyderabad facility, Telangana. Please refer below for more details including Fee strctures, Eligibility, Protocols and Modules etc.,. Please do call / message / whatsapp for more details on 9014935156 [India - +91]

Eligibility: BSc / BTech / MSc / MTech / MPhil / PhD in any Life Sciences studying or completed students

Торіс	Description	Tools		
1. Introduction	 Data Types, data formats -(Fastq, Qseq etc. most of the types including color space) Understanding raw read data from the NGS sequencers 			
2. Understanding NCBI, PUBMED,MESH and CDD	NCBI, PUBMED, MESH and CDD			
3. Sequence alignment and its application	 1. Introduction 2. Algorithms 3. Multiple sequence alignment 	1. BLAST 2. FASTA 3. Needleman wunch 4. Smith waterman 5. Clustal omega 6. t-coffee		
4. Genomics	 Introduction with gene databases- GENE, SNP Genome Annotation and Visualization Gene finding and function prediction General introduction to Gene expression in prokaryotes and eukaryotes, transcription factors Binding sites (SNP, EST, STS) 	GENSCAN		
5. ORF finder and its application	Online tools with ORF	ORF finder		

Protocols / Techniques Covered

6. Gene Prediction AND Expression	 Introduction to gene and gene prediction Determine Beginning and end positions of gene in genome and gene structure Codons; Discovery of split genes; Exons and Introns; Splicing; 	1. Human Splicing finder 2. GenMark and GenScan	
7. Phylogenetic tree-detail	 Definitions of homologues, orthologues, paralogues Methods of phylogenetic analysis: UPGMA, WPGMA, neighbour joining method, Maximum likelihood 	1. PHYLIP 2. MEGA 3. Tree finder	
8. Next Generation Sequencing Technology	 What is NGS? And Basic concepts Sequencing Methods Platform overview and Biological applications Recent scientific breakthroughs using NGS technology Applications 	 Illumina hi seq mi seq phylogenetic analysis MUMmer 3.12 	
9. Introduction to Sequencing	 Traditional Methods Sanger sequencing Drawbacks of Sanger's sequencing 		
10. NGS Data Generation	- Generation of large scale molecular biology data		
11. Next Generation Sequencing Methods	 Concept of sequence quality scores (Overview of Phred, Illumina, SoliD sequencing) Issues and Filtering Next-Gen data (coverage, depth, short-reads, Chimeras) Emulsion based PCR and polonies SAM tools and SAM alignment format Single molecules sequencing methods. Applications of High throughput sequencing methods. 		

12. NGS Data Analysis	 Alignment and mapping highlighting differences with conventional alignment, tools used and brief parameters (BWA, Bowtie, MAQ, etc) Brief Concepts of ChiP-seq, DNase-seq, MNase-seq, RNA-seq. Transcript Assembly and gene expression (RNA-Seq) with tools like Tophat/Cufflinks Variation detection (DNA-Seq and Exome sequencing) Protein Binding Site detection (Chip-Seq) with tools like MACS CpG Islands and Methylaion Patterns (Bisu lphite-Seq) with tools like bismark 		
13. Genome Databases and File Formats	1. Databases 2. File formats	1. GENEBANK 2. GENE 3. SNP 4. fast q 5. gbk	
14. Galaxy	 How to upload data Explore published histories Generate new history Changing dataset formats and editing attributes 	1. SRA data FTP download 2. SAM tools	
15. Data processing	 Analysis workflow Sequence quality evaluation Alignment theories Data formats and Data visualization to explore various NGS nodes 	 FastQC BLAST All Stand alone Blast SAM tools Bed Format 	
16. DNA-Seq	 Genetic variation Variant Calling using various methods Variant Annotations 	1. GATK 2. Snver 3. VarScan 4. Picard 5. SAMtool	
17. RNA-Seq	 Biological theories on RNA-Seq experiments Alignment Gene expression analysis Alternative splicing Transcript variation Allele-specific expression 	1. BIAST All 2. Standalone blast	
18. ChIP-seq	 Biological theories on ChIP-seq analysis DNA fragment evaluation Peak identification 	1. Trimmomatic 2. FAST QC	

Topics Covered for various durations:

5 Days - Topics 1, 9, 11, 15 and 16 + (Optional Minor Project)

10 Days - Topics 1, 4, 8, 9, 10, 11, 12, 14 and 16 + (Optional Minor Project)

20 Days - Topics 1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 + (Optional Minor Project)

30 Days to 45 Days - All Topics Mentioned above + (Optional Minor Project)

3 Months - All Topics mentioned above + Minor Project (On Live Secondary Research Data), Fee Rs 25000/- additional to 45 Days Module

6 Months - All Topics mentioned above + Publication Project (On Live Secondary Research Data - This project will be guided by respective research guides to get published in respective Scopus or Science Citation Indexed Journals. Research Design for the Publication Project will be provided by NTHRYS Research Panel), Fee Rs 65000/additional to 45 Days Moduel

Ngs Summer Training

Fee details in Rs per student						
Fee	5 Days	10 Days	20 days	1 Month	45 Days	
Individual	29700	31400	40600	50900	61000	
Group 2 - 4	28100	28100	38500	48500	58000	
Group 5 - 7	27800	27800	38100	48000	57400	
Group 8 - 10	27400	27400	37600	47500	56900	