

Aero Microbiology Training Program

The Aero Microbiology Training Program provides a detailed approach to analyzing airborne microorganisms, covering sampling techniques, microbial identification, and bioinformatics applications for practical and industrial purposes.

Note: Below modules are designed keeping high end industrial professionals into consideration. Please refer individual protocols below for affordable prices.

Introduction to Aero Microbiology

Kindly review the fees outlined for the individual protocols listed in this module.

- Identifying sources of airborne microorganisms in various environments
- Mechanisms of microbial dispersion in air (natural and anthropogenic)
- Role of airborne bacteria, fungi, and viruses in disease outbreaks
- Applications of aero microbiology in public health and agriculture
- Seasonal variations in microbial aerosol concentrations
- Significance of fungal spores in allergen production and air quality
- Microbial contributions to climate and pollution cycles
- Airborne transmission of antimicrobial-resistant microbes
- Monitoring bioaerosols in controlled environments (e.g., cleanrooms)
- Role of aerosols in microbial transport across long distances
- Case studies on airborne microbial outbreaks and health impacts
- Applications of bioaerosols in agricultural systems and crop health
- Impact of air purification systems on microbial loads
- Ethical considerations in studying airborne pathogens
- Emerging threats: bioaerosols in climate change scenarios
- Role of aero microbiology in disaster response and preparedness
- Analyzing microbial emissions from urban and industrial settings
- Developing microbial biosensors for air quality assessment
- Studying microbial survival and adaptation to atmospheric stress

Sampling Techniques for Airborne Microorganisms

Kindly review the fees outlined for the individual protocols listed in this module.

- Using impactors for capturing particulate-bound microbes
- Operating impingers for microbial aerosol sampling
- Filter-based air sampling for bacterial and fungal analysis
- Sampling in industrial and polluted environments
- Collecting bioaerosols from healthcare settings and hospitals
- Protocols for sampling microbial aerosols in agricultural fields
- Capturing fungal spores using spore traps and samplers
- Avoiding contamination during air sample collection
- Handling and transporting air samples to maintain viability
- Monitoring real-time microbial loads using automated sensors
- Calibrating and maintaining sampling devices for accurate readings
- Sampling air in extreme weather conditions (e.g., storms, wildfires)
- Protocols for using drones in microbial air sampling studies
- Sampling microbial aerosols near water bodies and wetlands
- Monitoring microbial loads in HVAC systems and indoor spaces
- Recording meteorological conditions during air sampling processes
- Field trials for bioaerosol sampling in urban and rural zones
- Standardizing sampling protocols for reproducibility
- Capturing airborne microbes during seasonal environmental shifts

Laboratory Techniques for Aero Microbiology

Kindly review the fees outlined for the individual protocols listed in this module.

- Microscopic identification of fungal spores and bacterial aerosols
- Gram staining for airborne bacterial isolates
- ITS sequencing for fungal diversity analysis in bioaerosols
- Quantitative PCR for analyzing microbial load in air samples
- Assessing microbial viability through live-dead staining methods
- Analyzing toxic bioaerosols using cytotoxicity assays
- Antimicrobial resistance profiling for airborne bacterial isolates
- Preparing air samples for DNA and RNA extraction
- Testing bioaerosols for pathogenic potential using ELISA
- Quantifying microbial enzymatic activity (e.g., urease, catalase)
- Isolation and identification of anaerobic airborne microbes
- Field-to-lab workflows for microbial air sample analysis
- Standardizing colony morphology recording for bioaerosols
- Preparing agar-based media for specific microbial groups
- Validating microbial identification techniques for reproducibility
- Archiving microbial isolates for future research applications
- Comparing microbial cultures from indoor and outdoor air samples
- Monitoring cross-contamination risks during lab handling
- Documenting and reporting findings for regulatory compliance

Aero Microbiology and Air Quality

Kindly review the fees outlined for the individual protocols listed in this module.

- Role of bioaerosols in contributing to respiratory illnesses
- Applications of aero microbiology in urban air pollution studies
- · Monitoring microbial emissions from industrial facilities
- Analyzing bioaerosols during wildfire and dust storm events
- Impact of fungal spores on indoor air pollution in humid zones
- Evaluating microbial loads in food processing environments
- Role of airborne microbes in HVAC system contamination
- Applications of bioaerosols as indicators of environmental health
- Microbial monitoring in wastewater treatment facilities
- Studying airborne bacterial and fungal contaminants in schools
- Monitoring zoonotic pathogens in agricultural bioaerosols
- Health risk analysis for microbial exposure in workplaces
- Microbial dispersion studies in high-traffic public areas
- Developing air filtration systems to reduce microbial loads
- Regulatory compliance standards for airborne microbial levels
- Bioaerosols as early indicators of ecosystem disturbances
- Case studies on bioaerosol monitoring in disaster-prone areas
- Correlating microbial diversity with air pollution metrics
- Testing microbial load reduction through advanced air filters

Basic Bioinformatics for Aero Microbiology

Kindly review the fees outlined for the individual protocols listed in this module.

- Constructing phylogenetic trees for airborne microbes
- Sequence alignment for analyzing microbial aerosols
- Functional annotation of microbial genomes from air samples
- Handling metagenomic data from bioaerosol sequencing
- Primer design for airborne microbial genetic studies
- Integrating molecular data with bioinformatics workflows
- Developing predictive models for bioaerosol dispersion
- Applications of microbial diversity metrics in air studies
- Case studies in bioinformatics-driven aero microbiology research
- Using Python and R for microbial data visualization
- Creating microbial sequence databases for bioaerosol analysis
- Predictive analysis for genetic diversity in bioaerosols
- Documenting bioinformatics findings for journal submissions
- Evaluating genetic markers in airborne pathogens

- Data validation for bioinformatics pipelines in aero microbiology
- Analyzing airborne microbial resistance genes using databases
- Applications of genomics in public health microbiology
- Designing workflows for airborne microbial functional studies
- Practical applications of bioinformatics in environmental studies

Individual Protocols Under Aero Microbiology Training Program

- 1. Understanding airborne microbial diversity and classification | Fee: Contact for fee
- 2. Identifying sources of airborne microorganisms in various environments | **Fee: Contact for fee**
- 3. Mechanisms of microbial dispersion in air (natural and anthropogenic) | Fee: Contact for fee
- 4. Role of airborne bacteria, fungi, and viruses in disease outbreaks | Fee: Contact for fee
- 5. Applications of aero microbiology in public health and agriculture | Fee: Contact for fee
- 6. Seasonal variations in microbial aerosol concentrations | Fee: Contact for fee
- 7. Significance of fungal spores in allergen production and air quality | Fee: Contact for fee
- 8. Microbial contributions to climate and pollution cycles | Fee: Contact for fee
- 9. Airborne transmission of antimicrobial-resistant microbes | Fee: Contact for fee
- 10. Monitoring bioaerosols in controlled environments (e.g., cleanrooms) | Fee: Contact for fee
- 11. Designing air sampling strategies for bioaerosols | Fee: Contact for fee
- 12. Using impactors for capturing particulate-bound microbes | Fee: Contact for fee
- 13. Operating impingers for microbial aerosol sampling | Fee: Contact for fee
- 14. Filter-based air sampling for bacterial and fungal analysis | Fee: Contact for fee
- 15. Sampling in industrial and polluted environments | Fee: Contact for fee
- 16. Capturing fungal spores using spore traps and samplers | Fee: Contact for fee
- 17. Avoiding contamination during air sample collection | Fee: Contact for fee
- 18. Handling and transporting air samples to maintain viability | Fee: Contact for fee
- 19. Monitoring real-time microbial loads using automated sensors | Fee: Contact for fee
- 20. Calibrating and maintaining sampling devices for accurate readings | Fee: Contact for fee
- 21. Sampling air in extreme weather conditions (e.g., storms, wildfires) | Fee: Contact for fee
- 22. Protocols for using drones in microbial air sampling studies | Fee: Contact for fee
- 23. Sampling microbial aerosols near water bodies and wetlands | Fee: Contact for fee
- 24. Monitoring microbial loads in HVAC systems and indoor spaces | Fee: Contact for fee
- 25. Recording meteorological conditions during air sampling processes | Fee: Contact for fee
- 26. Field trials for bioaerosol sampling in urban and rural zones | Fee: Contact for fee
- 27. Standardizing sampling protocols for reproducibility | Fee: Contact for fee
- 28. Capturing airborne microbes during seasonal environmental shifts | Fee: Contact for fee
- 29. Plating airborne microorganisms on selective and differential media | Fee: Contact for fee
- 30. Microscopic identification of fungal spores and bacterial aerosols | Fee: Contact for fee
- 31. Gram staining for airborne bacterial isolates | Fee: Contact for fee

NTHRYS OPC PVT LTD Aero Microbiology Training Program

- 32. ITS sequencing for fungal diversity analysis in bioaerosols | Fee: Contact for fee
- 33. Quantitative PCR for analyzing microbial load in air samples | Fee: Contact for fee
- 34. Assessing microbial viability through live-dead staining methods | Fee: Contact for fee
- 35. Analyzing toxic bioaerosols using cytotoxicity assays | Fee: Contact for fee
- 36. Antimicrobial resistance profiling for airborne bacterial isolates | Fee: Contact for fee
- 37. Preparing air samples for DNA and RNA extraction | Fee: Contact for fee
- 38. Testing bioaerosols for pathogenic potential using ELISA | Fee: Contact for fee
- 39. Quantifying microbial enzymatic activity (e.g., urease, catalase) | Fee: Contact for fee
- 40. Isolation and identification of anaerobic airborne microbes | Fee: Contact for fee
- 41. Field-to-lab workflows for microbial air sample analysis | Fee: Contact for fee
- 42. Standardizing colony morphology recording for bioaerosols | Fee: Contact for fee
- 43. Preparing agar-based media for specific microbial groups | Fee: Contact for fee
- 44. Validating microbial identification techniques for reproducibility | Fee: Contact for fee
- 45. Archiving microbial isolates for future research applications | Fee: Contact for fee
- 46. Comparing microbial cultures from indoor and outdoor air samples | Fee: Contact for fee
- 47. Monitoring cross-contamination risks during lab handling | Fee: Contact for fee
- 48. Documenting and reporting findings for regulatory compliance | Fee: Contact for fee
- 49. Assessing microbial aerosols in air quality monitoring systems | Fee: Contact for fee
- 50. Role of bioaerosols in contributing to respiratory illnesses | Fee: Contact for fee
- 51. Applications of aero microbiology in urban air pollution studies | Fee: Contact for fee
- 52. Monitoring microbial emissions from industrial facilities | Fee: Contact for fee
- 53. Analyzing bioaerosols during wildfire and dust storm events | Fee: Contact for fee
- 54. Impact of fungal spores on indoor air pollution in humid zones | Fee: Contact for fee
- 55. Evaluating microbial loads in food processing environments | Fee: Contact for fee
- 56. Role of airborne microbes in HVAC system contamination | Fee: Contact for fee
- 57. Applications of bioaerosols as indicators of environmental health | Fee: Contact for fee
- 58. Microbial monitoring in wastewater treatment facilities | Fee: Contact for fee
- 59. Studying airborne bacterial and fungal contaminants in schools | Fee: Contact for fee
- 60. Monitoring zoonotic pathogens in agricultural bioaerosols | Fee: Contact for fee
- 61. Health risk analysis for microbial exposure in workplaces | Fee: Contact for fee
- 62. Microbial dispersion studies in high-traffic public areas | Fee: Contact for fee
- 63. Developing air filtration systems to reduce microbial loads | Fee: Contact for fee
- 64. Regulatory compliance standards for airborne microbial levels | Fee: Contact for fee
- 65. Bioaerosols as early indicators of ecosystem disturbances | Fee: Contact for fee
- 66. Case studies on bioaerosol monitoring in disaster-prone areas | Fee: Contact for fee
- 67. Correlating microbial diversity with air pollution metrics | Fee: Contact for fee
- 68. Testing microbial load reduction through advanced air filters | Fee: Contact for fee
- 69. Using BLAST for bioaerosol microbial identification | Fee: Contact for fee
- 70. Constructing phylogenetic trees for airborne microbes | Fee: Contact for fee
- 71. Sequence alignment for analyzing microbial aerosols | Fee: Contact for fee
- 72. Functional annotation of microbial genomes from air samples | Fee: Contact for fee
- 73. Handling metagenomic data from bioaerosol sequencing | Fee: Contact for fee
- 74. Primer design for airborne microbial genetic studies | Fee: Contact for fee
- 75. Integrating molecular data with bioinformatics workflows | Fee: Contact for fee
- 76. Developing predictive models for bioaerosol dispersion | Fee: Contact for fee

- 77. Applications of microbial diversity metrics in air studies | Fee: Contact for fee
- 78. Case studies in bioinformatics-driven aero microbiology research | Fee: Contact for fee
- 79. Using Python and R for microbial data visualization | Fee: Contact for fee
- 80. Creating microbial sequence databases for bioaerosol analysis | Fee: Contact for fee
- 81. Predictive analysis for genetic diversity in bioaerosols | Fee: Contact for fee
- 82. Documenting bioinformatics findings for journal submissions | Fee: Contact for fee
- 83. Evaluating genetic markers in airborne pathogens | Fee: Contact for fee
- 84. Data validation for bioinformatics pipelines in aero microbiology | Fee: Contact for fee
- 85. Analyzing airborne microbial resistance genes using databases | Fee: Contact for fee
- 86. Applications of genomics in public health microbiology | Fee: Contact for fee
- 87. Designing workflows for airborne microbial functional studies | Fee: Contact for fee
- 88. Practical applications of bioinformatics in environmental studies | Fee: Contact for fee

Please contact on +91-8977624748 for more details

Cant Come to Hyderabad? No Problem, You can do it in Virtual / Online Mode