

Applied Immunology Internship

Advanced Focused Areas for Interns in Applied Immunology Internships

Back to All Internships Applied Immunology Internship Fee Details

- 1. Immune System Development
- 2. Immune Response Mechanisms
- 3. Antigen Presentation Pathways
- 4. <u>T Cell Biology</u>
- 5. <u>B Cell Biology</u>
- 6. Innate Immunity
- 7. Adaptive Immunity
- 8. Autoimmunity
- 9. Immunotherapy
- 10. Vaccine Development
- 11. Allergy and Hypersensitivity
- 12. Transplant Immunology
- 13. Immunogenetics
- 14. Immune Signaling Pathways
- 15. Immunological Tolerance
- 16. Immuno-Oncology
- 17. Mucosal Immunology
- 18. Immunodeficiency Disorders
- 19. <u>Neuroimmunology</u>
- 20. Immunometabolism
- 21. Immunoengineering
- 22. Immune Cell Therapy
- 23. <u>Tumor Immunology</u>
- 24. Immunodermatology
- 25. Immunotoxicology
- 26. Cytokine Storm
- 27. Immunobiomarkers
- 28. Computational Immunology
- 29. Immune Receptor Signaling
- 30. Pathogen-Host Interactions
- 31. Immunogenomics
- 32. Immunoinformatics

Page - 2

- 33. Therapeutic Antibodies
- 34. Immunoassay Development
- 35. Vaccine Adjuvants
- 36. Immunosuppressive Therapies
- 37. Immunological Memory
- 38. Immunotherapy in Autoimmune Diseases
- 39. Immunotherapy in Cancer
- 40. Immune Checkpoint Inhibitors
- 41. Immune Cell Differentiation
- 42. Gut Immunology
- 43. Immune System and Aging
- 44. Immunoproteomics
- 45. <u>Immunotherapy in Infectious Diseases</u>
- 46. Immune Evasion Strategies by Pathogens
- 47. Immune System Regulation
- 48. Immunodiagnostics
- 49. Systems Immunology

1. Immune System Development

Focuses on the processes by which the immune system develops from early embryonic stages to maturity, including the formation and maturation of immune cells.

2. Immune Response Mechanisms

Studies the various mechanisms through which the immune system recognizes and responds to pathogens, including the activation of immune cells and the production of antibodies.

3. Antigen Presentation Pathways

Focuses on the pathways by which antigens are processed and presented to T cells, a critical step in the initiation of adaptive immune responses.

4. T Cell Biology

Studies the development, differentiation, and functions of T cells, which play a central role in the adaptive immune response.

5. B Cell Biology

Focuses on the biology of B cells, including their role in antibody production, memory formation, and interaction with other immune cells.

6. Innate Immunity

Studies the components and mechanisms of the innate immune system, the body's first line

of defense against infections.

7. Adaptive Immunity

Focuses on the adaptive immune system, which provides a targeted and long-lasting response to specific pathogens through the actions of T and B cells.

8. Autoimmunity

Studies the mechanisms that lead to autoimmune diseases, where the immune system mistakenly attacks the body's own tissues.

9. Immunotherapy

Focuses on treatments that harness and enhance the immune system to fight diseases, including cancer and chronic infections.

10. Vaccine Development

Studies the design, development, and testing of vaccines to prevent infectious diseases and other health conditions by inducing an immune response.

11. Allergy and Hypersensitivity

Focuses on the immune mechanisms underlying allergic reactions and hypersensitivity disorders, including the role of IgE antibodies and mast cells.

12. Transplant Immunology

Studies the immune response to transplanted organs and tissues, including the mechanisms of rejection and the development of immunosuppressive therapies.

13. Immunogenetics

Focuses on the genetic basis of immune system function and its role in disease susceptibility, transplant compatibility, and response to therapies.

14. Immune Signaling Pathways

Studies the signaling pathways that regulate immune cell activation, proliferation, and differentiation, critical for coordinating immune responses.

15. Immunological Tolerance

Focuses on the mechanisms that prevent the immune system from attacking the body's own tissues, maintaining self-tolerance and preventing autoimmunity.

16. Immuno-Oncology

Studies the interaction between the immune system and cancer, including the development of immunotherapies that target tumors.

17. Mucosal Immunology

Focuses on the immune responses that occur at mucosal surfaces, such as the gut, respiratory tract, and urogenital tract, which are primary entry points for pathogens.

18. Immunodeficiency Disorders

Studies the genetic and acquired conditions that result in a weakened immune system, increasing susceptibility to infections.

19. Neuroimmunology

Focuses on the interactions between the nervous system and the immune system, including the role of inflammation in neurological diseases.

20. Immunometabolism

Studies the metabolic processes within immune cells that influence their function and the overall immune response, with implications for disease and therapy.

21. Immunoengineering

Focuses on the application of engineering principles to modify and enhance immune system function for therapeutic purposes, including the design of biomaterials and drug delivery systems.

22. Immune Cell Therapy

Studies the therapeutic use of immune cells, such as T cells and natural killer cells, to treat cancer and other diseases.

23. Tumor Immunology

Focuses on the immune system's response to tumors, including the mechanisms of immune evasion by cancer cells and the development of immunotherapies.

24. Immunodermatology

Studies the role of the immune system in skin diseases, including autoimmune skin disorders and the immune response to skin infections.

Immunotoxicology

Focuses on the effects of toxic substances on the immune system, including the identification of immunotoxic agents and their impact on health.

26. Cytokine Storm

Studies the excessive and uncontrolled release of cytokines, often seen in severe infections and immune disorders, leading to tissue damage and organ failure.

27. Immunobiomarkers

Focuses on the identification and use of biomarkers to assess immune function, disease progression, and response to therapies.

28. Computational Immunology

Studies the use of computational models and bioinformatics tools to understand immune system dynamics, predict immune responses, and develop new immunotherapies.

29. Immune Receptor Signaling

Focuses on the signaling pathways triggered by the binding of antigens to immune receptors, leading to the activation of immune responses.

30. Pathogen-Host Interactions

Studies the complex interactions between pathogens and the host immune system, including strategies used by pathogens to evade or manipulate the immune response.

31. Immunogenomics

Focuses on the genomic analysis of immune system genes to understand their role in disease susceptibility, immune diversity, and response to treatments.

32. Immunoinformatics

Studies the application of bioinformatics tools to analyze immunological data, including the prediction of epitopes, vaccine design, and immune system modeling.

33. Therapeutic Antibodies

Focuses on the development and use of monoclonal antibodies and other engineered antibodies as treatments for diseases such as cancer, autoimmune disorders, and infectious diseases.

25.

Immunoassay Development

Studies the design and optimization of immunoassays for detecting and quantifying antigens, antibodies, and other immune-related molecules in biological samples.

35. Vaccine Adjuvants

Focuses on substances added to vaccines to enhance the immune response, improving the efficacy and durability of vaccination.

36. Immunosuppressive Therapies

Studies the use of drugs and other treatments to suppress the immune system, used in conditions like autoimmune diseases and organ transplantation.

37. Immunological Memory

Focuses on the mechanisms by which the immune system "remembers" previous encounters with pathogens, enabling a faster and more robust response upon re-exposure.

38. Immunotherapy in Autoimmune Diseases

Studies the development and application of immunotherapies to modulate the immune response in autoimmune conditions, aiming to restore immune tolerance.

39. Immunotherapy in Cancer

Focuses on harnessing the immune system to target and destroy cancer cells, including the use of checkpoint inhibitors, CAR-T cells, and cancer vaccines.

40. Immune Checkpoint Inhibitors

Studies the development and use of drugs that block immune checkpoint proteins, unleashing the immune system to attack cancer cells.

41. Immune Cell Differentiation

Focuses on the processes by which immune cells develop and differentiate into specialized cell types, such as T cells, B cells, and macrophages.

42. Gut Immunology

Studies the immune system of the gastrointestinal tract, including the role of gut-associated lymphoid tissue (GALT) and the interaction between the immune system and gut microbiota.

34.

Immune System and Aging

Focuses on how aging affects the immune system, leading to a decline in immune function and an increased susceptibility to infections, cancer, and autoimmune diseases.

44. Immunoproteomics

Studies the proteomic aspects of the immune system, including the identification of immune-related proteins and their roles in health and disease.

45. Immunotherapy in Infectious Diseases

Focuses on the use of immunotherapies to enhance the immune response against infectious diseases, including the development of novel vaccines and immune-modulating treatments.

46. Immune Evasion Strategies by Pathogens

Studies how pathogens evade detection and destruction by the immune system, including mechanisms like antigenic variation, immune suppression, and molecular mimicry.

47. Immune System Regulation

Focuses on the complex regulatory networks that control immune responses, maintaining a balance between immunity and tolerance to prevent overreaction or autoimmunity.

48. Immunodiagnostics

Studies the development and application of diagnostic tools based on immune system components, such as antibodies and cytokines, for detecting diseases.

49. Systems Immunology

Focuses on the integration of high-throughput data, computational models, and systems biology approaches to understand the immune system as a whole, its dynamics, and its interactions with other biological systems.

Other Categories

• Fundamentals of Immunology

- Components of the Immune System
- Innate and Adaptive Immunity
- Antigen Processing and Presentation
- Cell-Mediated and Humoral Immunity
- Cytokines and Immune Signaling
- Immune Response Regulation
- Immunological Memory and Vaccination
- Allergies and Hypersensitivity Reactions
- Autoimmunity and Tolerance

43.

• Immune System Disorders

• Immunological Techniques and Assays

- Flow Cytometry and Immunophenotyping
- ELISA and Other Immunoassays
- Western Blotting and Protein Analysis
- Immunohistochemistry and Tissue Staining
- Fluorescence-Activated Cell Sorting (FACS)
- $\circ~$ In Vivo and In Vitro Immunological Assays
- Single-Cell Immunology Techniques
- Use of Animal Models in Immunology
- High-Throughput Screening and Immunomics
- Advancements in Immunological Technologies

• Applications in Clinical Immunology

- Diagnostics of Immunological Disorders
- Immunotherapy and Cancer Treatment
- Autoimmune Disease Management
- Allergy Testing and Treatment
- Infectious Disease Immunology
- Vaccine Development and Immunization
- Immunomodulatory Drugs and Therapies
- Transplant Immunology and Tolerance Induction
- Monoclonal Antibodies in Therapy
- Gene Therapy and Immune System Engineering

• Research and Innovations in Immunology

- Immunogenetics and Genomic Studies
- Immunoinformatics and Computational Immunology
- Systems Immunology and Network Analysis
- Immunometabolism and Disease
- Microbiome and Immune Interactions
- Immune Checkpoints and Cancer
- Development of Immunological Reagents
- Cellular Immunotherapy Techniques
- Emerging Infectious Diseases and Immunity
- Frontiers in Immunology Research

• Regulatory and Ethical Considerations

- Regulation of Immunological Diagnostics and Therapeutics
- Ethical Issues in Immunology Research
- Clinical Trials and Regulatory Approval
- Patient Consent and Data Privacy
- Use of Animals in Immunology Research
- Intellectual Property and Immunological Innovations
- Quality Control and Assurance in Immunology Labs
- Public Health and Immunization Policies
- Environmental and Societal Impacts of Immunology
- Future Trends in Immunological Ethics
- Future Directions and Emerging Trends

NTHRYS OPC PVT LTD Applied Immunology Internship

- Advancements in Immunotherapy
- $\circ~$ Role of Immunology in Precision Medicine
- $\circ~$ Emerging Technologies in Immunological Research
- Global Initiatives in Immunology
- $\circ\,$ Future of Immunological Diagnostics and Therapeutics
- Education and Training in Immunology
- Future Research Priorities in Immunology
- Impact of Biotechnology on Immunological Studies
- Next-Generation Immunology Techniques
- Public Engagement and Immunology Awareness

Contact Via WhatsApp on +91-7993084748 for Fee Details